Self-Supervised Feature Specific Neural Matrix Completion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Feature Acquisition with Supervised Matrix Completion

Feature missing is a serious problem in many applications, which may lead to low quality of training data and further significantly degrade the learning performance. While feature acquisition usually involves special devices or complex process, it is expensive to acquire all feature values for the whole dataset. On the other hand, features may be correlated with each other, and some values may ...

متن کامل

Supervised Learning in Matrix Completion Framework for Recommender System Design

Recommender systems primarily utilize the, highly sparse, explicit rating information to make relevant predictions. This data scarcity places a limit on the accuracy of prediction. In this work we attempt to alleviate the problem of data sparsity by using secondary information. Most existing works incorporate auxiliary information in a (bi-linear) matrix factorization setup; whilst our model is...

متن کامل

Semi-Supervised Matrix Completion for Cross-Lingual Text Classification

Cross-lingual text classification is the task of assigning labels to observed documents in a label-scarce target language domain by using a prediction model trained with labeled documents from a label-rich source language domain. Cross-lingual text classification is popularly studied in natural language processing area to reduce the expensive manual annotation effort required in the target lang...

متن کامل

Graph Matrix Completion in Presence of Outliers

Matrix completion problem has gathered a lot of attention in recent years. In the matrix completion problem, the goal is to recover a low-rank matrix from a subset of its entries. The graph matrix completion was introduced based on the fact that the relation between rows (or columns) of a matrix can be modeled as a graph structure. The graph matrix completion problem is formulated by adding the...

متن کامل

Supervised Learning for Self-Generating Neural Networks

In this paper, supervised learning for Self-Generating Neural Networks (SGNN) method, which was originally developed for the purpose of unsupervised learning, is discussed. An information analytical method is proposed to assign weights to attributes in the training examples if class information is available. This significantly improves the learning speed and the accuracy of the SGNN classiier. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3035120